360 research outputs found

    The impact of HIV infection on tuberculosis transmission in a country with low tuberculosis incidence: a national retrospective study using molecular epidemiology

    Get PDF
    Background: HIV is known to increase the likelihood of reactivation of latent tuberculosis to active TB disease; however, its impact on tuberculosis infectiousness and consequent transmission is unclear, particularly in lowincidence settings. Methods: National surveillance data from England, Wales and Northern Ireland on tuberculosis cases in adults from 2010 to 2014, strain typed using 24-locus mycobacterial-interspersed-repetitive-units–variable-number-tandem-repeats was used retrospectively to identify clusters of tuberculosis cases, subdivided into ‘first’ and ‘subsequent’ cases. Firstly, we used zero-inflated Poisson regression models to examine the association between HIV status and the number of subsequent clustered cases (a surrogate for tuberculosis infectiousness) in a strain type cluster. Secondly, we used logistic regression to examine the association between HIV status and the likelihood of being a subsequent case in a cluster (a surrogate for recent acquisition of tuberculosis infection) compared to the first case or a non-clustered case (a surrogate for reactivation of latent infection). Results: We included 18,864 strain-typed cases, 2238 were the first cases of clusters and 8471 were subsequent cases. Seven hundred and fifty-nine (4%) were HIV-positive. Outcome 1: HIV-positive pulmonary tuberculosis cases who were the first in a cluster had fewer subsequent cases associated with them (mean 0.6, multivariable incidence rate ratio [IRR] 0.75 [0.65–0.86]) than those HIV-negative (mean 1.1). Extra-pulmonary tuberculosis (EPTB) cases with HIV were less likely to be the first case in a cluster compared to HIVnegative EPTB cases. EPTB cases who were the first case had a higher mean number of subsequent cases (mean 2.5, IRR (3.62 [3.12–4.19]) than those HIV-negative (mean 0.6). Outcome 2: tuberculosis cases with HIV co-infection were less likely to be a subsequent case in a cluster (odds ratio 0.82 [0.69–0.98]), compared to being the first or a non-clustered case. Conclusions: Outcome 1: pulmonary tuberculosis-HIV patients were less infectious than those without HIV. EPTB patients with HIV who were the first case in a cluster had a higher number of subsequent cases and thus may be markers of other undetected cases, discoverable by contact investigations. Outcome 2: tuberculosis in HIV-positive individuals was more likely due to reactivation than recent infection, compared to those who were HIV-negative

    The impact of HIV infection on tuberculosis transmission in a country with low tuberculosis incidence:A national retrospective study using molecular epidemiology

    Get PDF
    BACKGROUND: HIV is known to increase the likelihood of reactivation of latent tuberculosis to active TB disease; however, its impact on tuberculosis infectiousness and consequent transmission is unclear, particularly in low-incidence settings. METHODS: National surveillance data from England, Wales and Northern Ireland on tuberculosis cases in adults from 2010 to 2014, strain typed using 24-locus mycobacterial-interspersed-repetitive-units-variable-number-tandem-repeats was used retrospectively to identify clusters of tuberculosis cases, subdivided into 'first' and 'subsequent' cases. Firstly, we used zero-inflated Poisson regression models to examine the association between HIV status and the number of subsequent clustered cases (a surrogate for tuberculosis infectiousness) in a strain type cluster. Secondly, we used logistic regression to examine the association between HIV status and the likelihood of being a subsequent case in a cluster (a surrogate for recent acquisition of tuberculosis infection) compared to the first case or a non-clustered case (a surrogate for reactivation of latent infection). RESULTS: We included 18,864 strain-typed cases, 2238 were the first cases of clusters and 8471 were subsequent cases. Seven hundred and fifty-nine (4%) were HIV-positive. Outcome 1: HIV-positive pulmonary tuberculosis cases who were the first in a cluster had fewer subsequent cases associated with them (mean 0.6, multivariable incidence rate ratio [IRR] 0.75 [0.65-0.86]) than those HIV-negative (mean 1.1). Extra-pulmonary tuberculosis (EPTB) cases with HIV were less likely to be the first case in a cluster compared to HIV-negative EPTB cases. EPTB cases who were the first case had a higher mean number of subsequent cases (mean 2.5, IRR (3.62 [3.12-4.19]) than those HIV-negative (mean 0.6). Outcome 2: tuberculosis cases with HIV co-infection were less likely to be a subsequent case in a cluster (odds ratio 0.82 [0.69-0.98]), compared to being the first or a non-clustered case. CONCLUSIONS: Outcome 1: pulmonary tuberculosis-HIV patients were less infectious than those without HIV. EPTB patients with HIV who were the first case in a cluster had a higher number of subsequent cases and thus may be markers of other undetected cases, discoverable by contact investigations. Outcome 2: tuberculosis in HIV-positive individuals was more likely due to reactivation than recent infection, compared to those who were HIV-negative

    Increasing human motor skill acquisition by driving theta-gamma coupling

    Get PDF
    Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude-modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta-gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta-gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta-gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimising functional improvements in response to training or therapy

    The gut microbiota of siblings offers insights into microbial pathogenesis of inflammatory bowel disease

    Get PDF
    Siblings of patients with Crohn's disease (CD) have elevated risk of developing CD and display aspects of disease phenotype, including faecal dysbiosis. In our recent article we have used 16S rRNA gene targeted high-throughput sequencing to comprehensively characterize the mucosal microbiota in healthy siblings of CD patients, and determine the influence of genotypic and phenotypic factors on the gut microbiota (dysbiosis). We have demonstrated that the core microbiota of both patients with CD and healthy siblings is significantly less diverse than controls. Faecalibacterium prausnitzii contributed most to core metacommunity dissimilarity between both patients and controls and between siblings and controls. Phenotype/genotype markers of CD risk significantly influenced microbiota variation between and within groups, of which genotype had the largest effect. Individuals with elevated CD-risk display mucosal dysbiosis characterized by reduced diversity of core microbiota and lower abundance of F. prausnitzii. The presence of this dysbiosis in healthy people at-risk of CD implicates microbiological processes in CD pathogenesis

    Immune reconstitution and clinical recovery following anti-CD28 antibody (TGN1412)-induced cytokine storm

    Get PDF
    Cytokine storm can result from cancer immunotherapy or certain infections, including COVID-19. Though short-term immune-related adverse events are routinely described, longer-term immune consequences and sequential immune monitoring are not as well defined. In 2006, six healthy volunteers received TGN1412, a CD28 superagonist antibody, in a first-in-man clinical trial and suffered from cytokine storm. After the initial cytokine release, antibody effect-specific immune monitoring started on Day + 10 and consisted mainly of evaluation of dendritic cell and T-cell subsets and 15 serum cytokines at 21 time-points over 2 years. All patients developed problems with concentration and memory; three patients were diagnosed with mild-to-moderate depression. Mild neutropenia and autoantibody production was observed intermittently. One patient suffered from peripheral dry gangrene, required amputations, and had persistent Raynaud's phenomenon. Gastrointestinal irritability was noted in three patients and coincided with elevated γδT-cells. One had pruritus associated with elevated IgE levels, also found in three other asymptomatic patients. Dendritic cells, initially undetectable, rose to normal within a month. Naïve CD8+ T-cells were maintained at high levels, whereas naïve CD4+ and memory CD4+ and CD8+ T-cells started high but declined over 2 years. T-regulatory cells cycled circannually and were normal in number. Cytokine dysregulation was especially noted in one patient with systemic symptoms. Over a 2-year follow-up, cognitive deficits were observed in all patients following TGN1412 infusion. Some also had signs or symptoms of psychological, mucosal or immune dysregulation. These observations may discern immunopathology, treatment targets, and long-term monitoring strategies for other patients undergoing immunotherapy or with cytokine storm

    A tool for functional brain imaging with lifespan compliance

    Get PDF
    The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelopment are limited due to growth in head-size with age and substantial head movement in young participants. Experimental designs to probe brain function are also limited by the unnatural environment typical brain imaging systems impose. However, developments in quantum technology allowed fabrication of a new generation of wearable magnetoencephalography (MEG) technology with the potential to revolutionise electrophysiological measures of brain activity. Here we demonstrate a lifespan-compliant MEG system, showing recordings of high fidelity data in toddlers, young children, teenagers and adults. We show how this system can support new types of experimental paradigm involving naturalistic learning. This work reveals a new approach to functional imaging, providing a robust platform for investigation of neurodevelopment in health and disease

    Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation.

    Get PDF
    Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue. Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications if the same guidelines were to be adopted. Here we propose a three-layer model including bone absorption to calculate the maximum pressure transmission through the human skull for frequencies ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the frequency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of 20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between 40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum pressure transmission for each ultrasound beam diameter and each frequency

    Reassessing associations between white matter and behaviour with multimodal microstructural imaging

    Get PDF
    Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40-200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM's relationship with behaviour, suggesting that variable biological effects may be shaping their interaction

    Transcranial direct current stimulation of right dorsolateral prefrontal cortex does not affect model-based or model-free reinforcement learning in humans

    Get PDF
    There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free ('habitual') control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region
    corecore